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The objective of this work is to optimize the thermal-elastic properties of multi-phase and multi-layer (MPML) composites by 

controlling the interfaces and matrix layers thicknesses. Aiming at the traditional genetic algorithm (GA) including parallel 

genetic algorithm (PGA) faces efficiency, scalability, and programming difficulty to solve this kind of optimization problems, 

we propose an iterative MapReduce guided genetic algorithm (IMGA). This method brings bond into MapReduce, and 

reasonably allocates various stages of GA to the map and reduce operator, then completes target optimization through 

multi-step iteration of map and reduce. The IMGA is interfaced with finite element code to find an optimal design for 

minimizing the coefficient of thermal expansion (CTE) of the MPML unidirectional fiber reinforced composite with constraints 

of elastic modulus and fiber volume fraction. Satisfactory results are obtained by comparing IMGA and GA. 
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1. Introduction 

 

Multi-phase and multi-layer (MPML) composite 

offers a high potential application in aerospace structures, 

in which the matrix consists of multiphase materials. In 

fact, this multi layer architecture can effectively resist the 

diffusion of oxidizing medium in composite to prevent the 

oxidation of fibers, and the interfaces between multi 

material phases can greatly prevent the crack expansion in 

matrix to improve the toughness of the composite [1]. 

Typically, continuous carbon fiber reinforced 

carbon/silicon carbide composite (C/C-SiC) [2-3] and 

ceramic matrix composite-multi-layer self-healing 

(CMC-MS) [4-5] are such kind of composite. Fig. 1 is the 

microstructure photograph of a certain CMC-MS [6]. As 

can be seen, the multi-layer matrices consisted of 

B13C2/SiC/B13C2/SiC are distributed around the fiber. With 

the existence of multi-phase material interfaces, they have 

the advantage of high oxidation resistance and high 

toughness. This is why MPML composite has its attractive 

advantages in aerospace applications. 

 

 

 

Fig. 1. MPML microstructure of CMC-MS. 

 

MPML composite are usually obtained by using the 

chemical vapor infiltration (CVI) process to alternately 

infiltrate the multi-layer material phases. During the CVI 

process, the thicknesses of layers are controllable. The 

variation of the thickness of each layer will lead to the 

geometrical change of the material microstructure, and 

affect the effective properties of composite as well. How 

to design the layers thicknesses to obtain composite with 

the best possible properties is significant for the 

engineering applications. Under high-temperature 

environment, the primary concern is to use materials with 
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low thermal expansion behaviors and high elastic 

properties. Motivated by this situation, the present paper is 

directed at optimizing the thermal-elastic properties of 

MPML composites by using finite element computation 

and genetic algorithm (GA) with parallel computing 

scheme. 

Optimization methods based on GA have 

demonstrated the potential to overcome many of the 

problems associated with gradient-based methods. Even 

though GA is most effective when the design space is large, 

high computational time and storage requirement often 

forces us to work with a reduced design space and thus 

limiting the efficacy of GA for achieving global optimal 

solutions. A solution to the above dilemma is to implement 

GA in a parallel computing environment, where full 

advantage can be taken of the low communication 

requirements of GA, and to use specialized models 

allowing sufficiently detailed representation without 

excessive computational requirements. 

It is well known that writing efficient parallel and 

distributed applications is complex. Current parallel GA 

(PGA) [7] either offers high-level programming 

abstractions, but is not scalable, or achieves scalability by 

hand-coding models using low-level parallel frameworks. 

Furthermore, PGAs also face the common development 

difficulties in distributed environments, such as 

communication and synchronization between distributed 

components. Now, due to the increase of cloud computing 

[8], PGAs have to solve more challenging problems 

common in data centers, such as heterogeneity and 

frequent failures. Many existing models for PGAs are 

based on message passing interface (MPI), which is not 

designed for cloud computing. Thus, it is important to 

explore a more suitable solution for performing distributed 

GAs in data centers. 

So the improved parallel PGA algorithms should 

avoid scientists to write complex and error-prone parallel 

code, and provide automatically distributing agents to 

achieve scalability. Recently, Google proposed the 

MapReduce [9] programming framework to address this 

complexity, which provides efficiency, scalability and 

easy-programming ways to solve parallel problems. Many 

real world tasks can be expressed in this model. The 

success of the more procedural map-reduce programming 

model, and its associated scalable implementations on 

commodity hardware bring lots of advantage to scientific 

calculation. However, the map-reduce paradigm is too 

low-level and rigid, and can not be combined with other 

computation model such as GA algorithm directly. 

Motivated by this situation, the MapReduce is extended to 

a new iterative MapReduce in the present work, which is 

then combined with GA algorithm to develop an iterative 

MapReduce guided GA (IMGA). 

The paper is organized as follows. Modeling study of 

the thermal-elastic properties of the composite is 

investigated by finite element method. Then, the 

optimization problem of minimizing thermal expansion 

coefficient of the MPML unidirectional fiber reinforced 

composite is considered with constraints of elastic 

modulus and fiber volume fraction. Finally, an attempt is 

made for the first time to use IMGA along with finite 

element method for carrying out optimal design.  

 

 

2. Finite element analysis of the MPML  

  unidirectional composite 

 

2.1. Unit cell model 

 

The architectures of MPML unidirectional composite 

consist of arranged fibres. The components of the 

multi-layered interfaces and matrix are infiltrated within 

the porous fibre preforms, according to the CVI process. 

In the present study, hexagonal fiber arrays are used to 

model the unidirectional CMCs. Two layers of interfaces 

and tow layers of matrix are distributed around the fibers. 

Fig. 2 shows the transverse cross-section of the MPML 

unidirectional composite. In the longitudinal direction, the 

fiber axes have been assumed to be parallel and of equal 

lengths. 

 

Fig. 2. Cross section of the MPML composite. 

The unit cell of composite (as seen in Fig. 3) is used 

in the present finite element analysis. Characteristic 

geometric parameters of the unit cell model are given: 
f  

is fibre diameter, 1d ~ 4d  are thicknesses of the interface 

and matrix layers.  

 

 

 

Fig. 3. Geometric parameters of unit cell. 
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The unit cell model is meshed using the 3D 

twenty-node, thermal-structural coupled element (SOLID 

96) of ANSYS finite element software [10], as depicted in 

Fig. 4. The number of elements and nodes is 3,840 and 

3,986, respectively. 

 

 
 

Fig. 4. Finite element model of unit cell. 

 

 

2.2. Finite computation of the effective properties 

 

2.2.1. Computation of the CTE 

 

The advantages of finite element method are its 

flexibility in modeling complex shapes, spatial variation of 

material properties, and its simplicity in numerical 

implementation. The CTE can be determined by finite 

element analysis of the thermo-elastic behavior of the 

composite’s unit cell.  

The unit cell model is assumed as a perfect elastic 

body without plastic deformation. The structural and 

thermal boundary conditions are given as follows: Along 

the planes 1 0x  , 2 0x  , and 3 0x  , the model is 

restricted to move in the 1x , 2x , and 3x  directions. 

Planes 1 1x l , 2 2x l , and 3 3x l  are free to move 

but have to remain planar in a parallel way to preserve the 

compatibility with adjacent cells. Suppose the deformation 

of the unit cell is caused by a temperature rise of T . 

During the deformation, i ix l  becomes i i ix l l   

and the displacement, il , can be determined from the 

finite element analysis. The CTE in direction i  then 

corresponds to 

i
i

i

l

l T






                  (1) 

 

2.2.2. Computation of the elastic modulus 

 

The specified displacement boundary conditions, such 

as the tensile and shear displacements, are imposed in the 

finite element model of unit cell. The elastic properties of 

the composites can be finally determined by the finite 

element analysis results of the stresses and strains of the 

unit cell model. Besides, the periodical displacement 

boundary conditions are needed to be imposed on the 

finite element model in order to satisfy forces continuity 

and displacements compatibility on the opposite faces of 

the unit cell. More details about the boundary conditions 

and computation procedure are not included herein for 

saving the text space, but can be obtained in our previous 

work [11]. 

 

 

3. Optimization problem 

 

In the present study, the CTE of the MPML 

unidirectional composite is minimized with constraints of 

elastic modulus and fiber volume fraction. The material 

used is T300 carbon fiber/pyrolytic carbon-silicon carbide 

matrix (C/C-SiC). The unit cell model depicted in Fig. 5 is 

concerned for optimization, which consists of two layers 

of interfaces and two layers of matrices made up of 

alternate pyrolytic carbon and silicon carbide. The fiber 

diameter 
f  is 10.0 m . Properties of each material 

phase can be found in Table 1 [12]. 

 

 

 

Table 1. Properties of the constituents. 

 

 E11 

GPa 

E33 

GPa 

G12 

GPa 

G23 

GPa 

v12 v23 11  

610 C   

22  

610 C   

33  

610 C   

T300 carbon fiber 22 220 7.75 4.8 0.42 0.12 8.85 -0.7 -0.7 

pyrolytic carbon 12 30 2.0 4.3 0.4 0.12 1.8 - - 

silicon carbide 350 - 145.8  0.2 - 4.5 - - 
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Fig. 5. Unit cell model for optimization. 

 

 

The design variables are the thicknesses of the 

interfaces and matrix layers. The optimization problem can 

be formulated as the follows: 

 

Minimize:  1 2 3 4, , ,d d d d  

Subject to:  

 1 2 3 4, , , 0lE d d d d E 
 

0 0f fV V   

and 

, 1, ..., 4l u

i i id d d i    

where  1 2 3 4, , ,d d d d  and  1 2 3 4, , ,E d d d d  

are the extensional thermal expansion coefficient and 

elastic modulus of MPML composite, respectively. 
lE  is 

the given elastic modulus. fV  is the volume fraction of 

fiber and constrained to be a constant 
0

fV . id  denotes 

the thickness of thi  matrix layer. The values 
l

id  and 

u

id  are the lower and upper bounds of the thickness of 

thi  matrix layer. The values of constrains and all the 

variables limits are listed in Table 2. 

 

 

 

 

 

 

Table 2. Values of constrains and all the variables limits. 

 

Constraints Limits of the design variables 

lE  

(GPa) 

0

fV  
1 2,l ld d  

( m ) 

1 2,u ud d  

( m ) 

3 4,l ld d  

( m ) 

3 4,u ud d  

( m ) 

200.0 0.4 0.5 1.0 0.5 1.5 

 

The non-differentiable and nonlinear natures of the 

above optimization problem induce difficulty in using 

classical deterministic approaches for solutions. To solve 

this optimization problem a genetic algorithm is used. GA 

abstracts the problem space as a population of individuals, 

and explores the optimum individual through a loop of 

operations. Usually the individual is represented by a 

string of symbols, and each step of the loop produces a 

new generation with reproduction, mutation, evaluation 

and selection operations. Given a generation of individuals 

as ancestors, the reproduction operation generates their 

offspring by combining several ancestors and the mutation 

operation performs simple stochastic variations on each 

offspring to generate a new version of it. The evaluation 

operation evaluates the offspring according to an objective 

function and the selection operation chooses the best one 

from the population for next generation. This process 

repeats until the optimum individual is found. 

 

 

4. Iterative MapReduce guided genetic  

   algorithm 

 

The implementation of GA to solve the optimization 

problem of MPML composite involves large numbers of 

finite element computations for obtaining the final solution. 

The computational time would be too long if the program 

is running on a single-processor computer. 

Therefore, an efficient distributed and parallel 

computing strategy is developed in this paper. A new 

iterative MapReduce that extends the popular MapReduce 

programming model to iterative computation is proposed 

and combined with GA to develop an efficient IMGA 

strategy. By using this approach, large numbers of 

computations are effectively merged to map process across 

lots of computing nodes and the computation time is 

decreased dramatically. 

 

4.1. Iterative MapReduce 

 

4.1.1. MapReduce programming model 

 

In this section the MapReduce framework is described. 

Its implementation and refinements were originally 
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proposed in [13]. In MapReduce framework, the 

processing is divided into two steps: map and reduce. Map 

take key/value pair as input and generate intermediate 

key/value pairs. Reduce merge all the pairs associated with 

the same (intermediate) key and then generates output. 

Abstractly, the two phases can be presented as follows. 

Obviously, MapReduce is a one-step computing model. 

 

1 1 2 2

2 2 3 3

( , ) ( , )

( , ( )) ( , )

map K V list K V

reduce K list V K V




     (2)

 

 

Unfortunately, the map-reduce model has its own set 

of limitations. Its one-input, two-stage data flow is 

extremely rigid. To perform tasks having a different data 

flow, e.g. joins, n stages or iteration, inelegant 

workarounds have to be devised. Fig. 6(a) shows a 

classical model that can be processed by MapReduce 

while Fig. 6(b) displays a chain can not be processed by 

MapReduce directly. So the procedure of GA, a kind of 

processing chain, can not be joined with MapReduce 

directly. 

 

 

(a) MapReduce 

 

(b) MapReduce Chains 

 

Fig. 6. MapReduce and MapReduce chains. 

 

 

4.1.2. Bring bond to MapReduce 

 

It is well known that MapReduce abstraction comes 

from the map and reduce primitives present in Lisp [13]. 

In Lisp and many other functional languages, any 

functions can be bonded. For example, if function double 

is described as   2double x x  , the function quadruple 

can be described as 

   ( )quadruple x double double x . In this example 

double bonds double to build a quadruple function. 

Processing two or more functions together is called "bond". 

So, bond introduces an iterative mechanism to functional 

languages. 

Based on the foundation of bond semantics and as a 

reaction to the iteration requirements in GA, we designed a 

new abstraction, iterative MapReduce. 

 

 

 

4.1.3. Iterative MapReduce 

 

Similar to MapReduce abstraction is inspired by the 

map and reduces primitives, the design of iterative 

MapReduce is based on map, reduce and bond primitives. 

By combining bond with the map/reduce operation, the 

map/reduce operations can be connected. During the bond 

step, it can make several different processing results. Fig. 

7 shows several kinds of iterative MapReduce. The natural 

bond between Map and Reduce in classical MapReduce is 

illustrated in Fig. 7(a). 

 

 

(a) Natural bond between map and reduce 

 

(b) Bond between reduce and map 

 

(c) Bond between map and map 

 

Fig. 7. Several kinds of bond for iterative MapReduce. 

 

When we bond reduce and map (as shown in Fig. 7 

(b)), map take key/value pair from reduce as input and 

generate intermediate key/value pairs. The programming 

model can be shown as 

2 2 3 3

3 3 2 2

( , ( )) ( , )

( , ) ( ' , ' )

reduce K list V K V

map K V list K V




     (3)

 

As we bond map and map (as shown in Fig. 7 (c)), 

map1 take key/value pair as input and generate 

intermediate key/value pairs while map2 take intermediate 

key/value pair from map1 as input and generate other 

intermediate key/value pairs. The programming model can 

be shown as 

 

1 1 2 2

2 2 2 2

1( , ) ( , )

2( , ) ( ' , ' )

map K V list K V

map K V list K V




     (4) 

 

In this paper, we use the bond between reduce and 

map as well as natural bond. Through these two kinds of 

iterations, we can allocate various stages of the GA to 

iterative map and reduce operators easily. 
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4.2. IMGA programming model 

 

 

 

Fig. 8. IMGA procedure. 

 

Based on the basic GA algorithm explained above, the 

IMGA procedure can be obtained as shown in Fig. 8. The 

control flow of execution consists of the following stages: 

1) The initialization generates offspring and performs 

mutation. 

2) The offspring are split into m pieces respectively for 

m map tasks. The value of m is chosen so as to maximize 

parallelism for map tasks. Generally this value is larger 

than the number of machines. 

3) Each piece of offspring is sent to a map task. The 

map task executes the fitness function for each individual 

and generates intermediate results. 

4) Reduce task merges all the pairs associated with the 

same (intermediate) key to generate output. When 

stopping criterion is achieved, reduce task outputs the best 

solution and ends the procedure. Otherwise, reduce task 

generates <k’, value’ > pairs as input for map tasks and 

begin a new iteration. 

The above stages are repeated until the optimum 

individuals meet the specified requirements. It can be seen 

that each fitness computation are involved in map 

procedure, and the various stages of the GA algorithm are 

combined with iterative MapReduce easily. The 

pseudo-code for the initialization, map and reduce 

functions in IMGA algorithm is listed in Table 3. 

 

Table 3. Initialization, map and reduce functions for IMGA procedure. 

 

Initialization() 

{ 

Randomly initialize seed population throughout the design space; 

} 

 

map(key,value) (key:the number of individual; value: individual  1 2, , ..., nd d d ) 

{  

Fitness(key)=Evaluation(value);//Calculate the fitness for individual 

Emit(Fitness(key),value); // Emit intermediate output 

} 

 

Evaluation(value){ //Calculate in some condition as fitness 

if (  1 2, , ..., 0l

nE d d d E  &
0 0f fV V  & , 1, 2, ...,l u

i i id d d i n   ) 

return  1 2, , ..., nd d d ; 

} 

 

reduce(key,value_list) (key: fitness of individual; value: individual  1 2, , ..., nd d d ) 

{     

if fitness > fitnessbest then 

    fitnessbest ← fitness;  // Fitnessbest is current best fitness value 

    vbest ← individual;   //vbest is the individual with best fitness value 

end if 

if vbest do not change for 30 generations then 

    Write best individual; 

else//Generate offspring 

    Do selection, mutation; 

Emit(key’, value’) for map; 

end if 

} 
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5. Numerical tests 

 

5.1. Setup 

 

5.1.1. Architecture of IMGA 

 

Seed Population

Master

Worker 1

…
…

Mapper
…

Worker m

Mapper
…

Reducer

Reducer
…

IMGA
Runtume System

Map Phase Reduce Phase

O
f
f
s
p
r
i
n
g
 
P
a
r
t
i
t
i
o
n
s

Initialization

  

Fig. 9. IMGA architecture overview. 

 
Haloop [14] as an extension to Hadoop [15] is the 

most popular open source implementation of iterative 

MapReduce. Fig. 9 shows our architecture of iterative 

MapReduce, which is based on Haloop. The architecture 

consists of one master, and multiple mapper and reducer 

workers. Mapper workers are responsible for executing the 

map function and reducer workers execute the reduce 

function (in Table 3), while the master schedules the 

execution of parallel tasks. 

 

 

5.1.2. Environment and implementation 

 

Our numerical tests are based on a cluster, composed 

of 50 worker nodes. A MapReduce cluster can cache the 

invariant data in the first iteration, and then reuse them in 

later iterations. Each node has 2 single-core AMD 

Operon64 2.2GHz CPUs, 4GB DDR RAM, and is 

connected by 1 Gbps Ethernet. All of the machines are in 

the same hosting facility and therefore the round-trip time 

between any pair of machines is less than a millisecond. 

The whole system is based on Haloop latest version. 

The map and reduce functions are built firstly and the 

fitness computation procedure based on ANSYS are then 

interfaced with the map function. 

 

 

5.2. Optimization results 

 

The optimization problems introduced in section 3 are 

implemented by using the above IMGA. In the 

optimization process, we have considered the size of the 

population equal to 100 individuals. Fig. 10 provides a 

convergence rate of the optimization procedure. It can be 

seen that the algorithm achieves the best solution after 128 

iterations. The extensional CTE has been decreased to 

64.08 10 C  . The final optimized interfaces and 

matrix layers thicknesses are: 0.64 m , 0. 58 m , 

0.79 m ,1.49 m . 

 

 

 
Fig. 10. Convergence rate for the optimization. 

 

 

To illustrate the correctness and efficiency for IMGA 

we obtained the results by IMGA and the direct GA which 

is displayed in Table 4. As can be seen, the agreement 

between the two solutions is satisfactory, and IMGA 

improves greatly the efficiency and takes only 6.6% of the 

execution time required for the conventional single node 

GA processing. 

Then, the scalability of IMGA is tested by scale the 

number of worker nodes from 10 to 50. We can see 

that the efficiency is around 91% in Fig. 11. 

 

 

Table 4. The comparation for IMGA in 20 nodes and 

conventional GA in single node. 

 

Item GA IMGA 

Number of individuals 100 100 

Number of machines 1 20 

Number of generations 131 128 

Execution time(min) 2153 143 

Best fitness 

value( 610 C  ) 

4.08 4.08 
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Fig. 11. The parallel efficiency of the IMGA. 

 

 

6. Conclusion 

 

Optimal design of MPML unidirectional composite 

with respect to the thermal-elastic properties is obtained by 

the use of a new IMGA algorithm described in the paper. 

The unit cell finite element model of MPML unidirectional 

composite is generated and finite element analysis is 

realized to determine the CTE and elastic modulus. A new 

iterative MapReduce that extends the popular MapReduce 

programming model to iterative computations is proposed 

and combined with GA method to develop the IMGA. The 

IMGA is finally used to minimize CTE of the MPML 

unidirectional composite with constraints of elastic 

modulus and fiber volume fraction. In addition, the 

computation efficiency and scalability of the proposed 

IMGA algorithm are studied respectively. Results indicate 

that the present IMGA algorithm provides an efficient tool 

for the large-scale optimization problems. 
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