
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS Vol. 9, No. 1-2, January – February 2015, p. 193 - 200

Optimizing thermal-elastic properties of multi-phase and

multi-layer composites by using iterative MapReduce

guided genetic algorithm

TAO YOU
a,*

, YINGJIE XU
b
, CHENGLIE DU

a

a
Institute of Computer Testing, Control and Simulation, School of Computer Science, Northwestern Polytechnical

University, Xi’an, 710072, China
b
Engineering Simulation and Aerospace Computing, Key Laboratory of Contemporary Design & Integrated

Manufacturing Technology, Northwestern Polytechnical University, Xi’an, 710072, China

The objective of this work is to optimize the thermal-elastic properties of multi-phase and multi-layer (MPML) composites by

controlling the interfaces and matrix layers thicknesses. Aiming at the traditional genetic algorithm (GA) including parallel

genetic algorithm (PGA) faces efficiency, scalability, and programming difficulty to solve this kind of optimization problems,

we propose an iterative MapReduce guided genetic algorithm (IMGA). This method brings bond into MapReduce, and

reasonably allocates various stages of GA to the map and reduce operator, then completes target optimization through

multi-step iteration of map and reduce. The IMGA is interfaced with finite element code to find an optimal design for

minimizing the coefficient of thermal expansion (CTE) of the MPML unidirectional fiber reinforced composite with constraints

of elastic modulus and fiber volume fraction. Satisfactory results are obtained by comparing IMGA and GA.

(Received October 11, 2014; accepted January 21, 2015)

Keywords: Multi-phase and multi-layer, Thermal-elastic properties, Genetic Algorithm, Bond, Iterative MapReduce

1. Introduction

Multi-phase and multi-layer (MPML) composite

offers a high potential application in aerospace structures,

in which the matrix consists of multiphase materials. In

fact, this multi layer architecture can effectively resist the

diffusion of oxidizing medium in composite to prevent the

oxidation of fibers, and the interfaces between multi

material phases can greatly prevent the crack expansion in

matrix to improve the toughness of the composite [1].

Typically, continuous carbon fiber reinforced

carbon/silicon carbide composite (C/C-SiC) [2-3] and

ceramic matrix composite-multi-layer self-healing

(CMC-MS) [4-5] are such kind of composite. Fig. 1 is the

microstructure photograph of a certain CMC-MS [6]. As

can be seen, the multi-layer matrices consisted of

B13C2/SiC/B13C2/SiC are distributed around the fiber. With

the existence of multi-phase material interfaces, they have

the advantage of high oxidation resistance and high

toughness. This is why MPML composite has its attractive

advantages in aerospace applications.

Fig. 1. MPML microstructure of CMC-MS.

MPML composite are usually obtained by using the

chemical vapor infiltration (CVI) process to alternately

infiltrate the multi-layer material phases. During the CVI

process, the thicknesses of layers are controllable. The

variation of the thickness of each layer will lead to the

geometrical change of the material microstructure, and

affect the effective properties of composite as well. How

to design the layers thicknesses to obtain composite with

the best possible properties is significant for the

engineering applications. Under high-temperature

environment, the primary concern is to use materials with

194 Tao You, Yingjie Xu, Chenglie Du

low thermal expansion behaviors and high elastic

properties. Motivated by this situation, the present paper is

directed at optimizing the thermal-elastic properties of

MPML composites by using finite element computation

and genetic algorithm (GA) with parallel computing

scheme.

Optimization methods based on GA have

demonstrated the potential to overcome many of the

problems associated with gradient-based methods. Even

though GA is most effective when the design space is large,

high computational time and storage requirement often

forces us to work with a reduced design space and thus

limiting the efficacy of GA for achieving global optimal

solutions. A solution to the above dilemma is to implement

GA in a parallel computing environment, where full

advantage can be taken of the low communication

requirements of GA, and to use specialized models

allowing sufficiently detailed representation without

excessive computational requirements.

It is well known that writing efficient parallel and

distributed applications is complex. Current parallel GA

(PGA) [7] either offers high-level programming

abstractions, but is not scalable, or achieves scalability by

hand-coding models using low-level parallel frameworks.

Furthermore, PGAs also face the common development

difficulties in distributed environments, such as

communication and synchronization between distributed

components. Now, due to the increase of cloud computing

[8], PGAs have to solve more challenging problems

common in data centers, such as heterogeneity and

frequent failures. Many existing models for PGAs are

based on message passing interface (MPI), which is not

designed for cloud computing. Thus, it is important to

explore a more suitable solution for performing distributed

GAs in data centers.

So the improved parallel PGA algorithms should

avoid scientists to write complex and error-prone parallel

code, and provide automatically distributing agents to

achieve scalability. Recently, Google proposed the

MapReduce [9] programming framework to address this

complexity, which provides efficiency, scalability and

easy-programming ways to solve parallel problems. Many

real world tasks can be expressed in this model. The

success of the more procedural map-reduce programming

model, and its associated scalable implementations on

commodity hardware bring lots of advantage to scientific

calculation. However, the map-reduce paradigm is too

low-level and rigid, and can not be combined with other

computation model such as GA algorithm directly.

Motivated by this situation, the MapReduce is extended to

a new iterative MapReduce in the present work, which is

then combined with GA algorithm to develop an iterative

MapReduce guided GA (IMGA).

The paper is organized as follows. Modeling study of

the thermal-elastic properties of the composite is

investigated by finite element method. Then, the

optimization problem of minimizing thermal expansion

coefficient of the MPML unidirectional fiber reinforced

composite is considered with constraints of elastic

modulus and fiber volume fraction. Finally, an attempt is

made for the first time to use IMGA along with finite

element method for carrying out optimal design.

2. Finite element analysis of the MPML

 unidirectional composite

2.1. Unit cell model

The architectures of MPML unidirectional composite

consist of arranged fibres. The components of the

multi-layered interfaces and matrix are infiltrated within

the porous fibre preforms, according to the CVI process.

In the present study, hexagonal fiber arrays are used to

model the unidirectional CMCs. Two layers of interfaces

and tow layers of matrix are distributed around the fibers.

Fig. 2 shows the transverse cross-section of the MPML

unidirectional composite. In the longitudinal direction, the

fiber axes have been assumed to be parallel and of equal

lengths.

Fig. 2. Cross section of the MPML composite.

The unit cell of composite (as seen in Fig. 3) is used

in the present finite element analysis. Characteristic

geometric parameters of the unit cell model are given:
f

is fibre diameter, 1d ~ 4d are thicknesses of the interface

and matrix layers.

Fig. 3. Geometric parameters of unit cell.

Optimizing thermal-elastic properties of multi-phase and multi-layer composites by using iterative MapReduce … 195

The unit cell model is meshed using the 3D

twenty-node, thermal-structural coupled element (SOLID

96) of ANSYS finite element software [10], as depicted in

Fig. 4. The number of elements and nodes is 3,840 and

3,986, respectively.

Fig. 4. Finite element model of unit cell.

2.2. Finite computation of the effective properties

2.2.1. Computation of the CTE

The advantages of finite element method are its

flexibility in modeling complex shapes, spatial variation of

material properties, and its simplicity in numerical

implementation. The CTE can be determined by finite

element analysis of the thermo-elastic behavior of the

composite’s unit cell.

The unit cell model is assumed as a perfect elastic

body without plastic deformation. The structural and

thermal boundary conditions are given as follows: Along

the planes 1 0x  , 2 0x  , and 3 0x  , the model is

restricted to move in the 1x , 2x , and 3x directions.

Planes 1 1x l , 2 2x l , and 3 3x l are free to move

but have to remain planar in a parallel way to preserve the

compatibility with adjacent cells. Suppose the deformation

of the unit cell is caused by a temperature rise of T .

During the deformation, i ix l becomes i i ix l l 

and the displacement, il , can be determined from the

finite element analysis. The CTE in direction i then

corresponds to

i
i

i

l

l T






 (1)

2.2.2. Computation of the elastic modulus

The specified displacement boundary conditions, such

as the tensile and shear displacements, are imposed in the

finite element model of unit cell. The elastic properties of

the composites can be finally determined by the finite

element analysis results of the stresses and strains of the

unit cell model. Besides, the periodical displacement

boundary conditions are needed to be imposed on the

finite element model in order to satisfy forces continuity

and displacements compatibility on the opposite faces of

the unit cell. More details about the boundary conditions

and computation procedure are not included herein for

saving the text space, but can be obtained in our previous

work [11].

3. Optimization problem

In the present study, the CTE of the MPML

unidirectional composite is minimized with constraints of

elastic modulus and fiber volume fraction. The material

used is T300 carbon fiber/pyrolytic carbon-silicon carbide

matrix (C/C-SiC). The unit cell model depicted in Fig. 5 is

concerned for optimization, which consists of two layers

of interfaces and two layers of matrices made up of

alternate pyrolytic carbon and silicon carbide. The fiber

diameter
f is 10.0 m . Properties of each material

phase can be found in Table 1 [12].

Table 1. Properties of the constituents.

 E11

GPa

E33

GPa

G12

GPa

G23

GPa

v12 v23 11

610 C 

22

610 C 

33

610 C 

T300 carbon fiber 22 220 7.75 4.8 0.42 0.12 8.85 -0.7 -0.7

pyrolytic carbon 12 30 2.0 4.3 0.4 0.12 1.8 - -

silicon carbide 350 - 145.8 0.2 - 4.5 - -

196 Tao You, Yingjie Xu, Chenglie Du

Fig. 5. Unit cell model for optimization.

The design variables are the thicknesses of the

interfaces and matrix layers. The optimization problem can

be formulated as the follows:

Minimize:  1 2 3 4, , ,d d d d

Subject to:

 1 2 3 4, , , 0lE d d d d E 

0 0f fV V 

and

, 1, ..., 4l u

i i id d d i  

where  1 2 3 4, , ,d d d d and  1 2 3 4, , ,E d d d d

are the extensional thermal expansion coefficient and

elastic modulus of MPML composite, respectively.
lE is

the given elastic modulus. fV is the volume fraction of

fiber and constrained to be a constant
0

fV . id denotes

the thickness of thi matrix layer. The values
l

id and

u

id are the lower and upper bounds of the thickness of

thi matrix layer. The values of constrains and all the

variables limits are listed in Table 2.

Table 2. Values of constrains and all the variables limits.

Constraints Limits of the design variables

lE

(GPa)

0

fV
1 2,l ld d

(m)

1 2,u ud d

(m)

3 4,l ld d

(m)

3 4,u ud d

(m)

200.0 0.4 0.5 1.0 0.5 1.5

The non-differentiable and nonlinear natures of the

above optimization problem induce difficulty in using

classical deterministic approaches for solutions. To solve

this optimization problem a genetic algorithm is used. GA

abstracts the problem space as a population of individuals,

and explores the optimum individual through a loop of

operations. Usually the individual is represented by a

string of symbols, and each step of the loop produces a

new generation with reproduction, mutation, evaluation

and selection operations. Given a generation of individuals

as ancestors, the reproduction operation generates their

offspring by combining several ancestors and the mutation

operation performs simple stochastic variations on each

offspring to generate a new version of it. The evaluation

operation evaluates the offspring according to an objective

function and the selection operation chooses the best one

from the population for next generation. This process

repeats until the optimum individual is found.

4. Iterative MapReduce guided genetic

 algorithm

The implementation of GA to solve the optimization

problem of MPML composite involves large numbers of

finite element computations for obtaining the final solution.

The computational time would be too long if the program

is running on a single-processor computer.

Therefore, an efficient distributed and parallel

computing strategy is developed in this paper. A new

iterative MapReduce that extends the popular MapReduce

programming model to iterative computation is proposed

and combined with GA to develop an efficient IMGA

strategy. By using this approach, large numbers of

computations are effectively merged to map process across

lots of computing nodes and the computation time is

decreased dramatically.

4.1. Iterative MapReduce

4.1.1. MapReduce programming model

In this section the MapReduce framework is described.

Its implementation and refinements were originally

Optimizing thermal-elastic properties of multi-phase and multi-layer composites by using iterative MapReduce … 197

proposed in [13]. In MapReduce framework, the

processing is divided into two steps: map and reduce. Map

take key/value pair as input and generate intermediate

key/value pairs. Reduce merge all the pairs associated with

the same (intermediate) key and then generates output.

Abstractly, the two phases can be presented as follows.

Obviously, MapReduce is a one-step computing model.

1 1 2 2

2 2 3 3

(,) (,)

(, ()) (,)

map K V list K V

reduce K list V K V




 (2)

Unfortunately, the map-reduce model has its own set

of limitations. Its one-input, two-stage data flow is

extremely rigid. To perform tasks having a different data

flow, e.g. joins, n stages or iteration, inelegant

workarounds have to be devised. Fig. 6(a) shows a

classical model that can be processed by MapReduce

while Fig. 6(b) displays a chain can not be processed by

MapReduce directly. So the procedure of GA, a kind of

processing chain, can not be joined with MapReduce

directly.

(a) MapReduce

(b) MapReduce Chains

Fig. 6. MapReduce and MapReduce chains.

4.1.2. Bring bond to MapReduce

It is well known that MapReduce abstraction comes

from the map and reduce primitives present in Lisp [13].

In Lisp and many other functional languages, any

functions can be bonded. For example, if function double

is described as   2double x x  , the function quadruple

can be described as

   ()quadruple x double double x . In this example

double bonds double to build a quadruple function.

Processing two or more functions together is called "bond".

So, bond introduces an iterative mechanism to functional

languages.

Based on the foundation of bond semantics and as a

reaction to the iteration requirements in GA, we designed a

new abstraction, iterative MapReduce.

4.1.3. Iterative MapReduce

Similar to MapReduce abstraction is inspired by the

map and reduces primitives, the design of iterative

MapReduce is based on map, reduce and bond primitives.

By combining bond with the map/reduce operation, the

map/reduce operations can be connected. During the bond

step, it can make several different processing results. Fig.

7 shows several kinds of iterative MapReduce. The natural

bond between Map and Reduce in classical MapReduce is

illustrated in Fig. 7(a).

(a) Natural bond between map and reduce

(b) Bond between reduce and map

(c) Bond between map and map

Fig. 7. Several kinds of bond for iterative MapReduce.

When we bond reduce and map (as shown in Fig. 7

(b)), map take key/value pair from reduce as input and

generate intermediate key/value pairs. The programming

model can be shown as

2 2 3 3

3 3 2 2

(, ()) (,)

(,) (' , ')

reduce K list V K V

map K V list K V




 (3)

As we bond map and map (as shown in Fig. 7 (c)),

map1 take key/value pair as input and generate

intermediate key/value pairs while map2 take intermediate

key/value pair from map1 as input and generate other

intermediate key/value pairs. The programming model can

be shown as

1 1 2 2

2 2 2 2

1(,) (,)

2(,) (' , ')

map K V list K V

map K V list K V




 (4)

In this paper, we use the bond between reduce and

map as well as natural bond. Through these two kinds of

iterations, we can allocate various stages of the GA to

iterative map and reduce operators easily.

198 Tao You, Yingjie Xu, Chenglie Du

4.2. IMGA programming model

Fig. 8. IMGA procedure.

Based on the basic GA algorithm explained above, the

IMGA procedure can be obtained as shown in Fig. 8. The

control flow of execution consists of the following stages:

1) The initialization generates offspring and performs

mutation.

2) The offspring are split into m pieces respectively for

m map tasks. The value of m is chosen so as to maximize

parallelism for map tasks. Generally this value is larger

than the number of machines.

3) Each piece of offspring is sent to a map task. The

map task executes the fitness function for each individual

and generates intermediate results.

4) Reduce task merges all the pairs associated with the

same (intermediate) key to generate output. When

stopping criterion is achieved, reduce task outputs the best

solution and ends the procedure. Otherwise, reduce task

generates <k’, value’ > pairs as input for map tasks and

begin a new iteration.

The above stages are repeated until the optimum

individuals meet the specified requirements. It can be seen

that each fitness computation are involved in map

procedure, and the various stages of the GA algorithm are

combined with iterative MapReduce easily. The

pseudo-code for the initialization, map and reduce

functions in IMGA algorithm is listed in Table 3.

Table 3. Initialization, map and reduce functions for IMGA procedure.

Initialization()

{

Randomly initialize seed population throughout the design space;

}

map(key,value) (key:the number of individual; value: individual  1 2, , ..., nd d d)

{

Fitness(key)=Evaluation(value);//Calculate the fitness for individual

Emit(Fitness(key),value); // Emit intermediate output

}

Evaluation(value){ //Calculate in some condition as fitness

if ( 1 2, , ..., 0l

nE d d d E  &
0 0f fV V  & , 1, 2, ...,l u

i i id d d i n  )

return  1 2, , ..., nd d d ;

}

reduce(key,value_list) (key: fitness of individual; value: individual  1 2, , ..., nd d d)

{

if fitness > fitnessbest then

 fitnessbest ← fitness; // Fitnessbest is current best fitness value

 vbest ← individual; //vbest is the individual with best fitness value

end if

if vbest do not change for 30 generations then

 Write best individual;

else//Generate offspring

 Do selection, mutation;

Emit(key’, value’) for map;

end if

}

Optimizing thermal-elastic properties of multi-phase and multi-layer composites by using iterative MapReduce … 199

5. Numerical tests

5.1. Setup

5.1.1. Architecture of IMGA

Seed Population

Master

Worker 1

…
…

Mapper
…

Worker m

Mapper
…

Reducer

Reducer
…

IMGA
Runtume System

Map Phase Reduce Phase

O
f
f
s
p
r
i
n
g

P
a
r
t
i
t
i
o
n
s

Initialization

Fig. 9. IMGA architecture overview.

Haloop [14] as an extension to Hadoop [15] is the

most popular open source implementation of iterative

MapReduce. Fig. 9 shows our architecture of iterative

MapReduce, which is based on Haloop. The architecture

consists of one master, and multiple mapper and reducer

workers. Mapper workers are responsible for executing the

map function and reducer workers execute the reduce

function (in Table 3), while the master schedules the

execution of parallel tasks.

5.1.2. Environment and implementation

Our numerical tests are based on a cluster, composed

of 50 worker nodes. A MapReduce cluster can cache the

invariant data in the first iteration, and then reuse them in

later iterations. Each node has 2 single-core AMD

Operon64 2.2GHz CPUs, 4GB DDR RAM, and is

connected by 1 Gbps Ethernet. All of the machines are in

the same hosting facility and therefore the round-trip time

between any pair of machines is less than a millisecond.

The whole system is based on Haloop latest version.

The map and reduce functions are built firstly and the

fitness computation procedure based on ANSYS are then

interfaced with the map function.

5.2. Optimization results

The optimization problems introduced in section 3 are

implemented by using the above IMGA. In the

optimization process, we have considered the size of the

population equal to 100 individuals. Fig. 10 provides a

convergence rate of the optimization procedure. It can be

seen that the algorithm achieves the best solution after 128

iterations. The extensional CTE has been decreased to

64.08 10 C  . The final optimized interfaces and

matrix layers thicknesses are: 0.64 m , 0. 58 m ,

0.79 m ,1.49 m .

Fig. 10. Convergence rate for the optimization.

To illustrate the correctness and efficiency for IMGA

we obtained the results by IMGA and the direct GA which

is displayed in Table 4. As can be seen, the agreement

between the two solutions is satisfactory, and IMGA

improves greatly the efficiency and takes only 6.6% of the

execution time required for the conventional single node

GA processing.

Then, the scalability of IMGA is tested by scale the

number of worker nodes from 10 to 50. We can see

that the efficiency is around 91% in Fig. 11.

Table 4. The comparation for IMGA in 20 nodes and

conventional GA in single node.

Item GA IMGA

Number of individuals 100 100

Number of machines 1 20

Number of generations 131 128

Execution time(min) 2153 143

Best fitness

value(610 C )

4.08 4.08

200 Tao You, Yingjie Xu, Chenglie Du

Fig. 11. The parallel efficiency of the IMGA.

6. Conclusion

Optimal design of MPML unidirectional composite

with respect to the thermal-elastic properties is obtained by

the use of a new IMGA algorithm described in the paper.

The unit cell finite element model of MPML unidirectional

composite is generated and finite element analysis is

realized to determine the CTE and elastic modulus. A new

iterative MapReduce that extends the popular MapReduce

programming model to iterative computations is proposed

and combined with GA method to develop the IMGA. The

IMGA is finally used to minimize CTE of the MPML

unidirectional composite with constraints of elastic

modulus and fiber volume fraction. In addition, the

computation efficiency and scalability of the proposed

IMGA algorithm are studied respectively. Results indicate

that the present IMGA algorithm provides an efficient tool

for the large-scale optimization problems.

Acknowledgement

This article is supported by “The Fundamental

Research Funds for the Central Universities NO.

3102014JSJ0008”, “The National Natural Science Funds

NO. 61303225”, “The aviation science funds NO.

20135553034”.

References

 [1] L. T. Zhang, L. F. Cheng, Y. D. Xu, et al, Journal of

 Aeronautical Materials, 26, 226 (2006).

 [2] W. Krenkel, Cfi-Ceramic Forum International, 80(8),

 31 (2003).

 [3] J. F. Schulte, J. Schmidt, R. Tamme, et al, Materials

 Science and Engineering A, 386(1-2), 428 (2004).

 [4] Aslain R, Pailler R, Bourrat X, et al, Solid State

 Ionics, 141-142, 541 (2001).

 [5] T. Aguchi, T. Nazawa, N. Iagawa, Journal of Nuclear

 Materials, 329-333, 572 (2004).

 [6] F. Aumouroux, S. Bertrand, R. Paller, et al,

 Composites Science and Technology, 59, 1073

 (1999).

 [7] E. Cant´u-Paz. Efficient and Accurate Parallel

 Genetic Algorithms. Springer, 2000.

 [8] A. Weiss. Computing in the Clouds. netWorker,

 11(4), 16 (2007).

 [9] J. Dean, S. Ghemawat, In OSDI’04: Proceedings of

 the 6th conference on Symposium on Opearting

 Systems Design & Implementation. USENIX

 Association, Berkeley, CA, USA, 10-10 (2004).

[10] ANSYS 10.0 User’s Manual”, ANSYS Inc.,

 Canonsburg, PA, USA.

[11] Y. J. Xu, W. H. Zhang, H. B. Wang, Materials

 Science and Technology, 24(4), 435 (2008).

[12] X. F. Han, Master Degree Thesis, Northwestern

 Polytechnical University, Department of Material

 Science, 2006.

[13] J. Dean, S. Ghemawat, Mapreduce: simplified data

 processing on large clusters. Commun. ACM 51, 1,

 107 (2008).

[14] Bu Y, Howe B, Balazinska M, Ernst M. Haloop,

 Proceedings of 38th International Conference on

 Very Large Databases, 3(1-2), 285 (2010).

[15] The Apache Hadoop Project.

 http://hadoop.apache.org.

*Corresponding author: youtao@nwpu.edu.cn

http://hadoop.apache.org/

